Scl and stem cell quiescence.

نویسنده

  • Brian P Sorrentino
چکیده

The mechanisms underlying maintenance of hematopoietic stem cells (HSCs) remain one of the critical mysteries in blood development. Because of advances in whole genome analysis and in reverse genetic animal model systems, there has been accelerating progress in identification of the genes involved in stem cell selfrenewal, lineage commitment and differentiation, and cell-cycle regulation. Critical genes include those encoding hematopoietic transcription factors, cell-signaling molecules, epigenetic modifiers of gene expression, and molecular regulators of cell-cycle progression.2-4 Despite much progress, we still lack an integrated understanding of how these complex genetic networks cooperate to maintain the pool of HSCs or methods to manipulate these processes for therapeutic intent. One issue of particular importance regards the identification of the mechanisms responsible for stem cell quiescence. At any given point in time, the majority of bone marrow stem cells in mice are in the G0 phase of the cell cycle5 but can be induced to cycle by a variety of stress conditions such as cytotoxic injury6 or hematopoietic stem cell transplantation.7 After hematopoiesis is restored or reconstituted, many of the HSCs return to a quiescent state by mechanisms that are still poorly understood. This regulation of HSC proliferation and pool size is critical for long-term maintenance of hematopoiesis. In this regard, the paper in this issue of Blood by Lacombe et al provides significant new information by demonstrating that Scl/Tal1 is required for maintenance of the quiescent stem cell pool (see figure). Scl/Tal1 was one of the first hematopoietic transcription factors to be identified and shown to be essential for hematopoiesis through germline deletion experiments in mice.8 However, the role of Scl in adult HSCs is controversial because of potentially conflicting results in conditional Scl deletion models9,10 and because of redundant activities of other related transcription factors.11 The current study shows that relatively high levels of Scl expression specify quiescent HSCs from the adult mouse bone marrow. Functional studies using Scl / bone marrow cells in quantitative transplantation experiments demonstrated that haplodeficient HSCs were significantly compromised in their ability to repopulate myeloid and T-cell lineages, and that these defects were magnified in secondary transplant recipients. Similar results were obtained using wild-type cells transduced with a shRNA against Scl. Long-term HSCs from Scl / mice showed increased entry into the cell cycle; however, these effects were specific to adult HSCs and not seen in perinatal HSCs up to 4 weeks after birth. The mechanisms for these effects may be explained by the finding that Scl was found to control the expression of Cycling pool

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scl regulates the quiescence and the long-term competence of hematopoietic stem cells.

The majority of long-term reconstituting hematopoietic stem cells (LT-HSCs) in the adult is in G(0), whereas a large proportion of progenitors are more cycling. We show here that the SCL/TAL1 transcription factor is highly expressed in LT-HSCs compared with short-term reconstituting HSCs and progenitors and that SCL negatively regulates the G(0)-G(1) transit of LT-HSCs. Furthermore, when SCL pr...

متن کامل

Genetic interaction between Kit and Scl.

SCL/TAL1, a tissue-specific transcription factor of the basic helix-loop-helix family, and c-Kit, a tyrosine kinase receptor, control hematopoietic stem cell survival and quiescence. Here we report that SCL levels are limiting for the clonal expansion of Kit⁺ multipotent and erythroid progenitors. In addition, increased SCL expression specifically enhances the sensitivity of these progenitors t...

متن کامل

Selective rescue of early haematopoietic progenitors in Scl(-/-) mice by expressing Scl under the control of a stem cell enhancer.

The stem cell leukaemia gene (Scl) encodes a basic helix-loop-helix transcription factor with a pivotal role in both haematopoiesis and endothelial development. During mouse development, Scl is first expressed in extra-embryonic mesoderm, and is required for the generation of all haematopoietic lineages and normal yolk sac angiogenesis. Ectopic expression of Scl during zebrafish development spe...

متن کامل

Cell-cycle quiescence maintains Caenorhabditis elegans germline stem cells independent of GLP-1/Notch

Many types of adult stem cells exist in a state of cell-cycle quiescence, yet it has remained unclear whether quiescence plays a role in maintaining the stem cell fate. Here we establish the adult germline of Caenorhabditis elegans as a model for facultative stem cell quiescence. We find that mitotically dividing germ cells--including germline stem cells--become quiescent in the absence of food...

متن کامل

Stem cell leukemia protein directs hematopoietic stem cell fate.

Stem cell leukemia (SCL) protein has been shown to be an essential transcription factor during hematopoietic development in the embryo. In adult hematopoiesis, however, the role for SCL has remained largely unknown, whereas it is expressed in bone marrow hematopoietic stem cells (HSCs). In this study, we performed HSC transplantation and an in vitro HSC differentiation assay using retrovirally ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 115 4  شماره 

صفحات  -

تاریخ انتشار 2010